-Hole Effect-Induced Electroluminescence of Halogen Cocrystals for Determination of Iodide in Seawater

ANALYTICAL CHEMISTRY(2024)

引用 0|浏览2
暂无评分
摘要
Developing new electrochemiluminescence (ECL) luminators with high stability, wide applicability, and strong designability is of great strategic significance to promote the ECL field to the frontier. Here, driven by the IN bond, 1,3,5-trifluoro-2,4,6-triiodobenzene (TFTI) and 2,4,6-trimethyl-1,3,5-triazine (TMT) self-assembled into a novel halogen cocrystal (TFTI-TMT) through slow solution volatilization. Significant difference of charge density existed between the N atoms on TMT and the sigma-hole of the I atoms on TFTI. Upon the induction of sigma-hole effect, high-speed and spontaneous charge transferring from TMT to the sigma-hole of TFTI occurred, stimulating exciting ECL signals. Besides, the sigma-hole of the I atoms could capture iodine ions specifically, which blocked the original charge transfer from the N atoms to the sigma-hole, causing the ECL signal of TFTI-TMT to undergo a quenching rate as high as 92.9%. Excitingly, the ECL sensing of TFTI-TMT toward I- possessed a wide linear range (10-5000 nM) and ultralow detection limit (3 nM) in a real water sample. The halogen cocrystal strategy makes sigma-hole a remarkable new viewpoint of ECL luminator design and enables ECL analysis technology to contribute to addressing the environmental and health threats posed by iodide pollution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要