Regulating Electrolyte Solvation Structures via Diluent-Solvent Interactions for Safe High-Voltage Lithium Metal Batteries

SMALL(2024)

引用 0|浏览3
暂无评分
摘要
Local high concentration electrolytes (LHCEs) have been proved to be one of the most promising systems to stabilize both high voltage cathodes and Li metal anode for next-generation batteries. However, the solvation structures and interactions among different species in LHCEs are still convoluted, which bottlenecks the further breakthrough on electrolyte development. Here, it is demonstrated that the hydrogen bonding interaction between diluent and solvent is crucial for the construction of LHCEs and corresponding interphase chemistries. The 2,2,2-trifluoroethyl trifluoromethane sulfonate (TFSF) is selected as diluent with the solvent dimethoxy-ethane (DME) to prepare a non-flammable LHCE for high voltage LMBs. This is first find that the hydrogen bonding interaction between TFSF and DME solvent tailors the electrolyte solvation structures by weakening the coordination of DME molecules to Li+ cations and allows more participation of anions in the first solvation shell, leading to the formation of aggregates (AGGs) clusters which are conducive to generating inorganic solid/cathodic electrolyte interphases (SEI/CEIs). The proposed TFSF based LHCE enables the Li||NCM811 (LiNi0.8Mn0.1O2) batteries to realize >80% capacity retention with a high average Coulombic efficiency of 99.8% for 230 cycles under aggressive conditions (NCM811 cathode: 3.4 mAh cm(-2), cut-off voltage: 4.4 V, and 20 mu m Li foil).
更多
查看译文
关键词
diluent-solvent interaction,lithium metal battery,local high concentration,non-flammable,solvation structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要