Follow-the-Perturbed-Leader for Adversarial Bandits: Heavy Tails, Robustness, and Privacy

Duo Cheng,Xingyu Zhou,Bo Ji

ICLR 2024(2024)

Cited 0|Views3
No score
Abstract
We study adversarial bandit problems with potentially heavy-tailed losses. Unlike standard settings with non-negative and bounded losses, managing negative and unbounded losses introduces a unique challenge in controlling the ``stability'' of the algorithm and hence the regret. To tackle this challenge, we propose a Follow-the-Perturbed-Leader (FTPL) based learning algorithm. Notably, our method achieves (nearly) optimal worst-case regret, eliminating the need for an undesired assumption inherent in the Follow-the-Regularized-Leader (FTRL) based approach. Thanks to this distinctive advantage, our algorithmic framework finds novel applications in two important scenarios with unbounded heavy-tailed losses. For adversarial bandits with heavy-tailed losses and Huber contamination, which we call the robust setting, our algorithm is the first to match the lower bound (up to a $\polylog(K)$ factor, where $K$ is the number of actions). In the private setting, where true losses are in a bounded range (e.g., $[0,1]$) but with additional Local Differential Privacy (LDP) guarantees, our algorithm achieves an improvement of a $\polylog(T)$ factor in the regret bound compared to the best-known results, where $T$ is the total number of rounds. Furthermore, when compared to state-of-the-art FTRL-based algorithms, our FTPL-based algorithm has a more streamlined design. It eliminates the need for additional explicit exploration and solely maintains the absolute value of loss estimates below a predetermined threshold.
More
Translated text
Key words
Adversarial Bandits,Online Learning,Heavy Tails,Follow-the-Perturbed-Leader
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined