A Simple and Near-Optimal Algorithm for Directed Expander Decompositions

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
In this work, we present the first algorithm to compute expander decompositions in an m-edge directed graph with near-optimal time Õ(m). Further, our algorithm can maintain such a decomposition in a dynamic graph and again obtains near-optimal update times. Our result improves over previous algorithms of Bernstein-Probst Gutenberg-Saranurak (FOCS 2020), Hua-Kyng-Probst Gutenberg-Wu (SODA 2023) that only obtained algorithms optimal up to subpolynomial factors. At the same time, our algorithm is much simpler and more accessible than previous work. In order to obtain our new algorithm, we present a new push-pull-relabel flow framework that generalizes the classic push-relabel flow algorithm of Goldberg-Tarjan (JACM 1988), which was later dynamized for computing expander decompositions in undirected graphs by Henzinger-Rao-Wang (SIAM J. Comput. 2020), Saranurak-Wang (SODA 2019). We then show that the flow problems formulated in recent work of Hua-Kyng-Probst Gutenberg-Wu (SODA 2023) to decompose directed graphs can be solved much more efficiently in the push-pull-relabel flow framework.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要