Chrome Extension
WeChat Mini Program
Use on ChatGLM

Insula→Amygdala and Insula→Thalamus Pathways Are Involved in Comorbid Chronic Pain and Depression-Like Behavior in Mice

Jing Chen, Yuan Gao,Shu-Ting Bao, Ying-Di Wang, Tao Jia,Cui Yin, Cheng Xiao, Chunyi Zhou

JOURNAL OF NEUROSCIENCE(2024)

Cited 0|Views9
No score
Abstract
The comorbidity of chronic pain and depression poses tremendous challenges for the treatment of either one because they exacerbate each other with unknown mechanisms. As the posterior insular cortex (PIC) integrates multiple somatosensory and emotional information and is implicated in either chronic pain or depression, we hypothesize that the PIC and its projections may contribute to the pathophysiology of comorbid chronic pain and depression. We show that PIC neurons were readily activated by mechanical, thermal, aversive, and stressful and appetitive stimulation in naive and neuropathic pain male mice subjected to spared nerve injury (SNI). Optogenetic activation of PIC neurons induced hyperalgesia and conditioned place aversion in naive mice, whereas inhibition of these neurons led to analgesia, conditioned place preference (CPP), and antidepressant effect in both naive and SNI mice. Combining neuronal tracing, optogenetics, and electrophysiological techniques, we found that the monosynaptic glutamatergic projections from the PIC to the basolateral amygdala (BLA) and the ventromedial nucleus (VM) of the thalamus mimicked PIC neurons in pain modulation in naive mice; in SNI mice, both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons and inhibition of these projections led to analgesia, CPP, and antidepressant -like effect. The present study suggests that potentiation of the PIC -> BLA and PIC -> VM projections may be important pathophysiological bases for hyperalgesia and depression -like behavior in neuropathic pain and reversing the potentiation may be a promising therapeutic strategy for comorbid chronic pain and depression.
More
Translated text
Key words
basolateral amygdala,comorbid chronic pain and depression,fi ber photometry,neuronal activity,neuropathic pain,optogenetics,posterior insular cortex,synaptic transmission,ventromedial nucleus of the thalamus
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined