Effects of Multicomponent Home-Based Intervention on Muscle Composition, Fitness, and Bone Density After Hip Fracture.

The journals of gerontology. Series A, Biological sciences and medical sciences(2024)

引用 0|浏览8
暂无评分
摘要
BACKGROUND:Mechanistic factors on the pathway to improving independent ambulatory ability among hip fracture patients by a multicomponent home-based physical therapy intervention that emphasized aerobic, strength, balance, and functional training are unknown. The aim of this study was to determine the effects of 2 different home-based physical therapy programs on muscle area and attenuation (reflects muscle density) of the lower extremities, bone mineral density (BMD), and aerobic capacity. METHODS:Randomized controlled trial of home-based 16 weeks of strength, endurance, balance, and function exercises (PUSH, n = 19) compared to seated active range-of-motion exercises and transcutaneous electrical neurostimulation (PULSE, n = 18) in community-dwelling adults >60 years of age within 26 weeks of hip fracture. RESULTS:In PUSH and PULSE groups combined, the fractured leg had lower muscle area and muscle attenuation and higher subcutaneous fat than the nonfractured leg (p < .001) at baseline. At 16 weeks, mean muscle area of the fractured leg was higher in the PUSH than PULSE group (p = .04). Changes in muscle area were not significantly different when compared to the comparative PULSE group. There was a clinically relevant difference in change in femoral neck BMD between groups (p = .05) that showed an increase after PULSE and decrease after PUSH. There were generally no between-group differences in mean VO2peak tests at 16-week follow-up, except the PUSH group reached a higher max incline (p = .04). CONCLUSIONS:The treatment effects of a multicomponent home-based physical therapy intervention on muscle composition, BMD, and aerobic capacity were not significantly different than an active control intervention in older adults recovering from hip fracture. TRIAL REGISTRATION:ClinicalTrials.gov Identifier: NCT01783704.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要