Chrome Extension
WeChat Mini Program
Use on ChatGLM

Nonequilibrium magnonic thermal transport engineering

arxiv(2024)

Cited 0|Views21
No score
Abstract
Thermal conductivity, a fundamental parameter characterizing thermal transport in solids, is typically determined by electron and phonon transport. Although other transport properties including electrical conductivity and thermoelectric conversion coefficients have material-specific values, it is known that thermal conductivity can be modulated artificially via phonon engineering techniques. Here, we demonstrate another way of artificially modulating the heat conduction in solids: magnonic thermal transport engineering. The time-domain thermoreflectance measurements using ferromagnetic metal/insulator junction systems reveal that the thermal conductivity of the ferromagnetic metals and interfacial thermal conductance vary significantly depending on the spatial distribution of nonequilibrium spin currents. Systematic measurements of the thermal transport properties with changing the boundary conditions for spin currents show that the observed thermal transport modulation stems from magnon origin. This observation unveils that magnons significantly contribute to the heat conduction even in ferromagnetic metals at room temperature, upsetting the conventional wisdom that the thermal conductivity mediated by magnons is very small in metals except at low temperatures. The magnonic thermal transport engineering offers a new principle and method for active thermal management.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined