谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Neat and rapid preparation of hydrophobic magnetic ionic liquids composed of transition metal chelates featuring in situ formation capabilities in aqueous matrices

NEW JOURNAL OF CHEMISTRY(2024)

引用 0|浏览8
暂无评分
摘要
Magnetic ionic liquids (MILs) form a subclass of ionic liquids (ILs) that possess paramagnetic properties and can respond to an external magnetic field, facilitating ease of manipulation in immiscible solvents. Despite being popular as solvents in catalysis, organic synthesis, and separations, MILs are obtained through complex and labor-intensive synthetic/purification routes that increase cost, are time-consuming, and require expertise in organic synthesis. To date, no study has successfully developed a straightforward and rapid procedure for MILs that also eliminates purification. In this study, transition metal-containing bis[(trifluoromethyl)sulfonyl]imide ([NTf2-]) salts and N-alkylimidazoles, diglycolamides, and O-donor ligands were used to produce hydrophobic MILs that could maintain their chemical integrity under water for over 6 months. A neat heat/stir method was employed to form MILs for long-term storage or later use while an in situ method was used for select combinations to generate the same MIL under 30 s in the bulk presence of water. Viscosities as low as 198.3 cP at 22.8 degrees C were obtained that were comparable to previous classes of paramagnetic solvents. In contrast to MILs comprised of O-donor ligands, those formed with alkylimidazoles and diglycolamides were found to be soluble in non-polar solvents such as hexane at concentrations of up to 50% (w/v) MIL-to-solvent ratio while being insoluble in water even at 0.01% (w/v). Effective magnetic moment values for MILs ranged from 2.78 to 5.16 Bohr magnetons (mu(B)) and were observed to be dependent on the metal center in the [NTf2-] salts. The solvents possessed excellent thermal stabilities with diglycolamide-based MILs exhibiting structural resilience up to 345 degrees C. The synthetic design of these MILs has successfully achieved the primary objective of facilitating easy access to magnetoactive solvents by reducing their preparation to a simple step consisting of mixing two readily available reagents to expedite production in high-throughput laboratories where these compounds can be incorporated in automated separations and analytical testing systems where their magnetic properties can be conveniently exploited.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要