Robust Kalman filters under epistemic uncertainty for non-Gaussian systems with multiplicative noise

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL(2024)

引用 0|浏览0
暂无评分
摘要
This article proposes two robust Kalman filters to solve the issue of inaccurate modeling in multiplicative noise systems due to epistemic limitations. First, we construct all conceivable state/measurement transition probability densities as an ambiguity set. This ambiguity set chooses the Wasserstein distance or the moment-based metric as the distance metric. Besides, this set is an inequality set with a chosen tolerance, which can be seen as a non-negative radius ball. Then, by combining the robust solution of the least favorable model in that ball with the alternating direction method of multipliers or an efficient direct solution method, we propose two robust Kalman filters based on the minimum mean square error criterion. A classical example is provided to verify the effectiveness of the proposed robust filters in comparison to existing state-of-the-art filters.
更多
查看译文
关键词
ADMM,epistemic uncertainty,moment-based metric,multiplicative noise,robust Kalman filter,Wasserstein ambiguity set
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要