In-situ construction of In2O3/In2S3-CdIn2S4 Z-scheme heterojunction nanotubes for enhanced photocatalytic hydrogen production

Yige Qi, Guoxi Zhou,Yunchao Wu,Hou Wang,Zhiyong Yan,Yan Wu

Journal of Colloid and Interface Science(2024)

引用 0|浏览9
暂无评分
摘要
Semiconductor photocatalysis was considered as an ideal solution to energy shortages. Herein, a novel ternary In2O3/In2S3-CdIn2S4 (IOSC) nanotube (NTs) photocatalyst was successfully constructed via in situ growth of In2S3 and CdIn2S4 nanosheets onto In2O3 skeleton. It was used for the efficient and stable photo-production of hydrogen from water splitting. The rationally designed IOSC NTs displayed significantly enhanced photocatalytic H2 production under visible light irradiation (≥420 nm), with the highest H2 yield determined to be 2892 μmol·g−1, which is much higher than that of pristine In2S3 and In2O3/In2S3 (IOS) NTs. Cyclic testing has shown that the IOSC2 product remains stable after four cycles of repeated use. The enhanced photocatalytic activity was contributed by its tightly bound tube-nanosheets heterogeneous structure and superior light absorption. Photoelectrons transfer in IOSC2 follows a Z-scheme mechanism, which greatly facilitates its utilization of photogenerated electrons and prevents CdIn2S4 from undergoing photo-corrosion affecting material stability. This work demonstrates the key role of in situ growth in the interface design of ternary heterostructures.
更多
查看译文
关键词
In2O3/In2S3-CdIn2S4,Z-scheme,Ternary heterojunction,Photocatalysis,H2 production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要