Circadian assessment of heart failure using explainable deep learning and novel multi-parameter polar images

Computer Methods and Programs in Biomedicine(2024)

引用 0|浏览3
暂无评分
摘要
Background and objective Heart failure (HF) is a multi-faceted and life-threatening syndrome that affects more than 64.3 million people worldwide. Current gold-standard screening technique, echocardiography, neglects cardiovascular information regulated by the circadian rhythm and does not incorporate knowledge from patient profiles. In this study, we propose a novel multi-parameter approach to assess heart failure using heart rate variability (HRV) and patient clinical information. Methods In this approach, features from 24-hour HRV and clinical information were combined as a single polar image and fed to a 2D deep learning model to infer the HF condition. The edges of the polar image correspond to the timely variation of different features, each of which carries information on the function of the heart, and internal illustrates color-coded patient clinical information. Results Under a leave-one-subject-out cross-validation scheme and using 7,575 polar images from a multi-center cohort (American and Greek) of 303 coronary artery disease patients (median age: 58 years [50–65], median BMI: 27.28 kg/m2 [24.91–29.41]), the model yielded mean values for the AUC, sensitivity, specificity, NMCC, and accuracy of 0.883, 90.68%, 95.19%, 0.93, and 92.62%, respectively. Moreover, interpretation of the model showed proper attention to key hourly intervals and clinical information for each HF stage. Conclusions The proposed approach could be a powerful early HF screening tool and a supplemental circadian enhancement to echocardiography which sets the basis for next-generation personalized healthcare.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要