Quantum machine learning with indefinite causal order

Nannan Ma, P. Z. Zhao,Jiangbin Gong

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
In a conventional circuit for quantum machine learning, the quantum gates used to encode the input parameters and the variational parameters are constructed with a fixed order. The resulting output function, which can be expressed in the form of a restricted Fourier series, has limited flexibility in the distributions of its Fourier coefficients. This indicates that a fixed order of quantum gates can limit the performance of quantum machine learning. Building on this key insight (also elaborated with examples), we introduce indefinite causal order to quantum machine learning. Because the indefinite causal order of quantum gates allows for the superposition of different orders, the performance of quantum machine learning can be significantly enhanced. Considering that the current accessible quantum platforms only allow to simulate a learning structure with a fixed order of quantum gates, we reform the existing simulation protocol to implement indefinite causal order and further demonstrate the positive impact of indefinite causal order on specific learning tasks. Our results offer useful insights into possible quantum effects in quantum machine learning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要