Correlated decoding of logical algorithms with transversal gates

Madelyn Cain,Chen Zhao,Hengyun Zhou, Nadine Meister, J. Pablo Bonilla Ataides,Arthur Jaffe,Dolev Bluvstein,Mikhail D. Lukin

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates (Bluvstein et al., Nature 626, 58-65 (2024)), we show that the performance of logical algorithms can be substantially improved by decoding the qubits jointly to account for physical error propagation during transversal entangling gates. We find that such correlated decoding improves the performance of both Clifford and non-Clifford transversal entangling gates, and explore two decoders offering different computational runtimes and accuracies. By considering deep logical Clifford circuits, we find that correlated decoding can significantly improve the space-time cost by reducing the number of rounds of noisy syndrome extraction per gate. These results demonstrate that correlated decoding provides a major advantage in early fault-tolerant computation, and indicate it has considerable potential to reduce the space-time cost in large-scale logical algorithms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要