谷歌浏览器插件
订阅小程序
在清言上使用

Operational Space and Plasma Performance with an RMP-ELM Suppressed Edge

C. Paz-Soldan, S. Gu,N. Leuthold, P. Lunia, P. Xie,M. W. Kim, S. K. Kim,N. C. Logan,J. -K. Park,W. Suttrop, Y. Sun,D. B. Weisberg,M. Willensdorfer, the ASDEX-Upgrade, DIII-D, EAST, KSTAR Teams

arxiv(2024)

引用 0|浏览25
暂无评分
摘要
The operational space and global performance of plasmas with edge-localized modes (ELMs) suppressed by resonant magnetic perturbations (RMPs) are surveyed by comparing AUG, DIII-D, EAST, and KSTAR stationary operating points. RMP-ELM suppression is achieved over a range of plasma currents, toroidal fields, and RMP toroidal mode numbers. Consistent operational windows in edge safety factor are found across devices, while windows in plasma shaping parameters are distinct. Accessed pedestal parameters reveal a quantitatively similar pedestal-top density limit for RMP-ELM suppression in all devices of just over 3x1019 m-3. This is surprising given the wide variance of many engineering parameters and edge collisionalities, and poses a challenge to extrapolation of the regime. Wide ranges in input power, confinement time, and stored energy are observed, with the achieved triple product found to scale like the product of current, field, and radius. Observed energy confinement scaling with engineering parameters for RMP-ELM suppressed plasmas are presented and compared with expectations from established H and L-mode scalings, including treatment of uncertainty analysis. Different scaling exponents for individual engineering parameters are found as compared to the established scalings. However, extrapolation to next-step tokamaks ITER and SPARC find overall consistency within uncertainties with the established scalings, finding no obvious performance penalty when extrapolating from the assembled multi-device RMP-ELM suppressed database. Overall this work identifies common physics for RMP-ELM suppression and highlights the need to pursue this no-ELM regime at higher magnetic field and different plasma physical size.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要