Coronary Physiology Instantaneous Wave-Free Ratio (iFR) Derived From X-Ray Angiography Using Artificial Intelligence Deep Learning Models: A Pilot Study

JOURNAL OF INVASIVE CARDIOLOGY(2024)

引用 0|浏览8
暂无评分
摘要
Objectives. Coronary angiography (CAG)-derived physiology methods have been developed in an attempt to simplify and increase the usage of coronary physiology, based mostly on dynamic fluid computational algorithms. We aimed to develop a different approach based on artificial intelligence methods, which has seldom been explored. Methods. Consecutive patients undergoing invasive instantaneous free-wave ratio (iFR) measurements were included. We developed artificial intelligence (AI) models capable of classifying target lesions as positive (iFR <= 0.89) or negative (iFR > 0.89). The predictions were then compared to the true measurements. Results. Two hundred-fifty measurements were included, and 3 models were developed. Model 3 had the best overall performance: accuracy, negative predictive value (NPV), positive predictive value (PPV), sensitivity, and specificity were 69%, 88%, 44%, 74%, and 67%, respectively. Performance differed per target vessel. For the left anterior descending artery (LAD), model 3 had the highest accuracy (66%), while model 2 the highest NPV (86%) and sensitivity (91%). PPV was always low/modest. Model 1 had the highest specificity (68%). For the right coronary artery, model 1 had an accuracy of 86%, NPV was 97%, and specificity was 87%, but all models had low PPV (maximum 25%) and low/modest sensitivity (maximum 60%). For the circumflex, model 1 performed best: accuracy, NPV, PPV, sensitivity, and specificity were 69%, 96%, 24%, 80%, and 68%, respectively. Conclusions. We developed 3 AI models capable of binary iFR estimation from CAG images. Despite modest accuracy, the consistently high NPV is of potential clinical significance, as it would enable avoidance of further invasive maneuvers after CAG. This pivotal study offers proof of concept for further development.
更多
查看译文
关键词
DeepLearning,ArtificialIntelligence,MachineLearning,CoronaryAngiography,CoronaryArtery Disease,PercutaneousCoronary,Intervention,CoronaryPhysiology,Fractional Flow Reserve,Instantaneous Wave-Free,Ratio(IFR)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要