Nanostructured Si-C Composites As High-Capacity Anode Material For All-Solid-State Lithium-Ion Batteries

BATTERIES & SUPERCAPS(2021)

Cited 13|Views8
No score
Abstract
Silicon carbon void structures (Si-C) are attractive anode materials for lithium-ion batteries to cope with the volume changes of silicon during cycling. In this study, Si-C with varying Si contents (28-37 %) are evaluated in all-solid-state batteries (ASSBs) for the first time. The carbon matrix enables enhanced performance and lifetime of the Si-C composites compared to bare silicon nanoparticles in half-cells even at high loadings of up to 7.4 mAh cm(-2). In full cells with nickel-rich NCM (LiNi0.9Co0.05Mn0.05O2, 210 mAh g(-1)), kinetic limitations in the anode lead to a lowered voltage plateau compared to NCM half-cells. The solid electrolyte (Li6PS5Cl, 3 mS cm(-1)) does not penetrate the Si-C void structure resulting in less side reactions and higher initial coulombic efficiency compared to a liquid electrolyte (72.7 % vs. 31.0 %). Investigating the influence of balancing of full cells using 3-electrode ASSB cells revealed a higher delithiation of the cathode as a result of the higher cut-off voltage of the anode at high n/p ratios. During galvanostatic cycling, full cells with either a low or rather high overbalancing of the anode showed the highest capacity retention of up to 87.7 % after 50 cycles.
More
Translated text
Key words
all-solid-state battery, balancing, nanostructures, silicon carbon composites, thiophosphate solid electrolyte
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined