Effect of growth temperature on the microstructure and properties of epitaxial MoS2 monolayers grown by metalorganic chemical vapor deposition

Chen Chen,Nicholas Trainor,Shalini Kumari, Henrik Myja,Tilmar Kuemmell, Zhiyu Zhang, Yuxi Zhang, Anuj Bisht,Muhtasim Ul Karim Sadaf, Najam U. Sakib, Ying Han, Thomas V. Mc Knight, Andrew R. Graves, Meghan E. Leger, Nicholas D. Redwing,Myeongok Kim,Dorota Anna Kowalczyk,Gerd Bacher,Nasim Alem, Yang Yang,Saptarshi Das,Joan M. Redwing

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A(2024)

引用 0|浏览3
暂无评分
摘要
Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900-1000 degrees C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 degrees C to 5% at 1000 degrees C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A(1g) peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility m(FE) = 17.3 cm(2)/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 degrees C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from similar to 2% at 900 degrees C to &similar to 5% at 95 degrees C to similar to 10% at 1000degree celsius. The growth temperature of 950 degrees C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要