Artificial Intelligence for Hybrid Modeling in Fluid Catalytic Cracking (FCC)

PROCESSES(2024)

引用 0|浏览0
暂无评分
摘要
This study reports a novel hybrid model for the prediction of six critical process variables of importance in an industrial-scale FCC (fluid catalytic cracking) riser reactor: vacuum gas oil (VGO) conversion, outlet riser temperature, light cycle oil (LCO), gasoline, light gases, and coke yields. The proposed model is developed via the integration of a computational particle-fluid dynamics (CPFD) methodology with artificial intelligence (AI). The adopted methodology solves the first principle model (FPM) equations numerically using the CPFD Barracuda Virtual Reactor 22.0 (R) software. Based on 216 of these CPFD simulations, the performance of an industrial-scale FCC riser reactor unit was assessed using VGO catalytic cracking kinetics developed at CREC-UWO. The dataset obtained with CPFD is employed for the training and testing of a machine learning (ML) algorithm. This algorithm is based on a multiple output feedforward neural network (FNN) selected to allow one to establish correlations between the riser reactor feeding conditions and its outcoming parameters, with a 0.83 averaged regression coefficient and an overall RMSE of 1.93 being obtained. This research underscores the value of integrating CPFD simulations with ML to optimize industrial processes and enhance their predictive accuracy, offering significant advancements in FCC riser reactor unit operations.
更多
查看译文
关键词
FCC,CPFD,CREC riser simulator,machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要