Scale-Dependent Drivers of Marine Heatwaves Globally

GEOPHYSICAL RESEARCH LETTERS(2024)

引用 0|浏览3
暂无评分
摘要
Marine heatwaves (MHWs) are prolonged extreme warm water events, threatening marine ecosystems. Understanding drivers of MHWs over the global ocean is essential for their forecast. Here, we use an eddy-resolving coupled global climate model with improved realism of MHWs to evaluate the drivers of MHWs at different spatial scales, that is, MHWs defined based on temperature anomalies at different spatial scales. The properties of MHWs are scale-dependent, being generally weaker, less frequent, and longer with increasing spatial scales. The primary driver of MHWs shifts from local oceanic intrinsic advection to atmospheric forcing as their spatial scale becomes larger. The transition spatial scale between the ocean and atmosphere-driven regimes varies geographically, being larger in eddy-rich regions but smaller in gyre interior. This study suggests the complicated dynamics of MHWs at different spatial scales and provides guidance on improving their forecast capacity. Increasing greenhouse gas emission causes ocean warming, triggering frequent extreme warm water events known as marine heatwaves (MHWs). An in-depth knowledge of the drivers of MHWs globally is essential for improving their forecast capacity. In this study, we demonstrate the dominant drivers of MHWs vary with their spatial scales based on a state-of-the-art high-resolution global climate simulation. Smaller-scale MHWs are primarily driven by oceanic processes, whereas atmospheric processes play a dominant role in driving larger-scale MHWs. The transition spatial scale between the ocean and atmosphere-driven regimes is region-dependent. It is generally larger in regions with energetic ocean currents such as the western boundary currents as well as their extension, but smaller in the gyre interior where the ocean is more quiescent. Dominant drivers of Marine heatwaves (MHWs) shift from oceanic to atmospheric processes as their spatial scale increases The transition spatial scale from ocean to atmosphere-driven MHWs varies geographically The transition spatial scale is larger in eddy-rich regions while smaller in gyre interior
更多
查看译文
关键词
marine heatwaves,drivers,spatial scales
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要