Lanthanide Doping into All-Inorganic Heterometallic Halide Layered Double Perovskite Nanocrystals for Multimodal Visible and Near-Infrared Emission

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览2
暂无评分
摘要
The introduction of lanthanide ions (Ln(3+)) into all-inorganic lead-free halide perovskites has captured significant attention in optoelectronic applications. However, doping Ln(3+) ions into heterometallic halide layered double perovskite (LDP) nanocrystals (NCs) and their associated doping mechanisms remain unexplored. Herein, we report the first colloidal synthesis of Ln(3+) (Yb3+, Er3+)-doped LDP NCs utilizing a modified hot-injection method. The resulting NCs exhibit efficient near-infrared (NIR) photoluminescence in both NIR-I and NIR-II regions, achieved through energy transfer down-conversion mechanisms. Density functional theory calculations reveal that Ln(3+) dopants preferentially occupy the Sb3+ cation positions, resulting in a disruption of local site symmetry of the LDP lattices. By leveraging sensitizations of intermediate energy levels, we delved into a series of Ln(3+)-doped Cs4M(II)Sb2Cl12 (M(II): Cd2+ or Mn2+) LDP NCs via co-doping strategies. Remarkably, we observe a brightening effect of the predark states of Er3+ dopant in the Er3+-doped Cs4M(II)Sb2Cl12 LDP NCs owing to the Mn component acting as an intermediate energy bridge. This study not only advances our understanding of energy transfer mechanisms in doped NCs but also propels all-inorganic LDP NCs for a wider range of optoelectronic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要