Discovery of multi-anion antiperovskites X6NFSn2 (X= Ca, Sr) as promising thermoelectric materials by computational screening

MATTER(2024)

引用 0|浏览4
暂无评分
摘要
The thermoelectric performance of existing perovskites lags far behind that of state-of-the-art thermoelectric materials such as SnSe. Despite halide perovskites showing promising thermoelectric properties, namely, high Seebeck coefficients and ultralow thermal conductivities, their thermoelectric performance is significantly restricted by low electrical conductivities. Here, we explore new multi-anion antiperovskites X6NFSn2 (X = Ca, Sr, and Ba) via B-site anion mutation in antiperovskite and global structure searches and demonstrate their phase stability by first-principles calculations. Ca6NFSn2 and Sr6NFSn2 exhibit decent Seebeck coefficients and ultralow lattice thermal conductivities (<1 W m(-1) K-1). Notably, Ca6NFSn2 and Sr6NFSn2 show remarkably larger electrical conductivities compared to the halide perovskite CsSnI3. The combined superior electrical and thermal properties of Ca6NFSn2 and Sr6NFSn2 lead to high thermoelectric figures of merit (ZTs) of -1.9 and -2.3 high temperatures. Our exploration of multi-anion antiperovskites X6NFSn2 (X = Ca, Sr) realizes the "phonon-glass, electron-crystal"concept within the antiperovskite structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要