Hierarchical porous Fe/Ni-based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries

CARBON(2024)

引用 0|浏览0
暂无评分
摘要
Developing sustainable and efficient bifunctional catalysts for oxygen reduction (ORR) and evolution (OER) reactions is challenging for energy conversion and storage. This work proposes a hierarchical carbon matrix decorated with nitrogen atoms (NC) as a support for obtaining high-performance electrocatalysts based on iron and nickel (Fe/Ni@N-C). The effect of different Fe:Ni ratios and the pyrolysis conditions on the catalyst performance were investigated by combining electrochemical tests, N-2-adsorption-desorption, X-ray diffraction, Transmission Electron Microscopy, and X-ray photoelectron spectroscopy. Once optimized the pyrolysis conditions and the Fe:Ni ratio, the Fe/Ni@N-C catalyst showed high bifunctional OER/ORR activity in a three-electrode cell in an alkaline environment (KOH 1 M), with an overall Delta E for the ORR-OER reaction of 0.75 V. Fe/Ni@N-C was assembled in a rechargeable zinc-air battery, resulting in an excellent electrochemical performance in terms of power density (148.5 mWcm(-2)) and durability, outperforming the benchmark Pt/C-RuO2.
更多
查看译文
关键词
Platinum-group-metal-free electrocatalysts,Oxygen reduction reaction,Oxygen evolution reaction,Bifunctional catalyst,Fe/Ni-based catalyst,Zinc-air batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要