Boosted Electrocatalytic Degradation of Levofloxacin by Chloride Ions: Performances Evaluation and Mechanism Insight with Different Anodes

MOLECULES(2024)

引用 0|浏览0
暂无评分
摘要
As chloride (Cl-) is a commonly found anion in natural water, it has a significant impact on electrocatalytic oxidation processes; yet, the mechanism of radical transformation on different types of anodes remains unexplored. Therefore, this study aims to investigate the influence of chlorine-containing environments on the electrocatalytic degradation performance of levofloxacin using BDD, Ti4O7, and Ru-Ti electrodes. The comparative analysis of the electrode performance demonstrated that the presence of Cl- improved the removal and mineralization efficiency of levofloxacin on all the electrodes. The enhancement was the most pronounced on the Ti4O7 electrode and the least significant on the Ru-Ti electrode. The evaluation experiments and EPR characterization revealed that the increased generation of hydroxyl radicals and active chlorine played a major role in the degradation process, particularly on the Ti4O7 anode. The electrochemical performance tests indicated that the concentration of Cl- affected the oxygen evolution potentials of the electrode and consequently influenced the formation of hydroxyl radicals. This study elucidates the mechanism of Cl- participation in the electrocatalytic degradation of chlorine-containing organic wastewater. Therefore, the highly chlorine-resistant electrocatalytic anode materials hold great potential for the promotion of the practical application of the electrocatalytic treatment of antibiotic wastewater.
更多
查看译文
关键词
electrocatalytic oxidation,levofloxacin wastewater,degradation efficiency,chloride ion,reaction mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要