Configurable swellability of hydrogel microstructure for structural-color-based imaging concealment/encryption

Yunhui Wu, Lanlan Liu, Guohao Bo,Qiang Li,Chenjie Dai,Zhongyang Li,Jian Zhang,Xuefeng Zhang

NANOSCALE(2024)

引用 0|浏览0
暂无评分
摘要
Optical information concealment/encryption technologies are of great importance to structural color applications. Although a series of responsive materials have been developed for dynamic structural color, the shortcomings of the high-quality synthesis process, the complex controlling method, and the low-resolution capability limit their practical use. Herein, we proposed a novel strategy of humidity-driven structural-color-based imaging concealment/encryption by utilizing metal-hydrogel-metal (MHM) nanocavities with configurable swellablity response to humidity change. With varied exposure doses, multi-stage MHM nanocavities with swellable hydrogel interlayers are achieved, generating dynamic structural color covering the visible spectrum. We revealed that the swelling ratio of hydrogel microstructures can be gradually adjusted between 1.05 and 2.08 by varying the exposure dose. We demonstrated that a hydrogel-based structural color image can be concealed with humidity changes by configurating swellable and non-swellable hydrogel pixels together. Furthermore, we developed the double exposure method in which the first exposure can generate pixel arrays for the deceptive image and the second exposure can locally suppress the swellablity of certain pixels. This method can highlight hidden images in a moist state, demonstrating a powerful strategy for high-density optical information encryption. Multi-stage MHM nanocavities with configurably swellable hydrogel interlayers are achieved through high-resolution electron-beam exposure, resulting in structural-color-based imaging concealment/encryption driven by humidity change.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要