Oxidative dehydrogenation of ethylbenzene on mesoporous carbon catalysts: effect of the active site number on the apparent catalytic activity

CATALYSIS SCIENCE & TECHNOLOGY(2024)

引用 0|浏览4
暂无评分
摘要
Oxidative dehydrogenation (ODH) of ethylbenzene (EB) over nanocarbon catalysts has attracted intensive attention due to its impressive dehydrogenation conversion, selectivity and low ecological carbon footprint. In this work, novel sucrose-derived mesoporous carbon (SMC-x) was synthesized via the hard template method and applied as a catalyst in the EB ODH reaction. The SMC-1000 catalyst demonstrated an EB conversion of 55.6% with a styrene (ST) selectivity of 90.9% under gentle reaction conditions, maintaining long-term stability for over 18 h, surpassing commercial nanocarbon materials. Through a correlation between reactivity and the surface composition and structural information of SMC-x catalysts, ketonic carbonyl groups have been identified as the catalytically active sites for the dehydrogenation reactions, and the apparent catalytic activity of the carbon materials is found to be directly related to the number of active sites. This finding underscores the significance of these specific functional groups in driving the catalytic activity of SMC-x. Furthermore, the fundamental reaction kinetics and mechanistic nature of SMC-x catalyzed EB ODH reactions were systematically investigated through kinetic analysis, isotope, and temperature programmed desorption experiments. SMC-x catalysts demonstrate a distinctive carbon framework containing a significant number of C 00000000 00000000 00000000 00000000 11111111 00000000 11111111 00000000 00000000 00000000 O active sites for ethylbenzene oxidative dehydrogenation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要