Recent advances in the fabrication of organic solvent nanofiltration membranes using covalent/metal organic frameworks

CHEMICAL COMMUNICATIONS(2024)

Cited 0|Views5
No score
Abstract
Organic solvent nanofiltration (OSN) has evolved as a vital technological frontier with paramount significance in the separation and purification of organic solvents. Its implication is particularly prominent in industries such as pharmaceuticals, petrochemicals, and environmental remediation. This comprehensive review, meticulously navigates through the current state of research in OSN membranes, unveiling both the critical challenges and promising opportunities that beckon further exploration. The central focus of this review is on the unique utilization of covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) in OSN membrane design, leveraging their distinctive structural attributes-tunable porosity, robust chemical stability, and molecular sieving capabilities. These qualities position them as exceptional candidates for crafting membranes tailored to the intricacies of organic solvent environments. Our investigation extends into the fundamental principles that render COFs and MOFs adept in OSN applications, dissecting their varied fabrication methods while offering insights into the advantages and limitations of each. Moreover, we address environmental and sustainability considerations in the use of COF and MOF-based OSN membranes. Furthermore, we meticulously present the latest advancements and innovations in this burgeoning field, charting a course toward potential future directions and emerging research areas. By underscoring the challenges awaiting exploration, this review not only provides a panoramic view of the current OSN landscape but also lays the groundwork for the evolution of efficient and sustainable OSN technologies, specifically harnessing the unique attributes of COFs and MOFs. This review explores the promising role of COFs and MOFs in OSN membranes highlighting their potential for revolutionizing solvent separation and purification across crucial sectors like pharmaceuticals, petrochemicals, and environmental remediation.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined