Hamiltonian simulation using the quantum singular-value transformation: Complexity analysis and application to the linearized Vlasov-Poisson equation

Kiichiro Toyoizumi,Naoki Yamamoto,Kazuo Hoshino

PHYSICAL REVIEW A(2024)

引用 0|浏览4
暂无评分
摘要
Quantum computing can be used to speed up the simulation time (more precisely, the number of queries of the algorithm) for physical systems; one such promising approach is the Hamiltonian simulation (HS) algorithm. Recently, it was proven that the quantum singular-value transformation (QSVT) achieves the minimum simulation time for HS. An important subroutine of the QSVT-based HS algorithm is the amplitude amplification operation, which can be realized via the oblivious amplitude amplification or the fixed-point amplitude amplification in the QSVT framework. In this work we execute a detailed analysis of the error and number of queries of the QSVT-based HS and show that the oblivious method is better than the fixed-point one in the sense of simulation time. Based on this finding, we apply the QSVT-based HS to the one-dimensional linearized Vlasov-Poisson equation and demonstrate that the linear Landau damping can be successfully simulated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要