Single-Atom Nanozymes: From Precisely Engineering to Extensive Applications

ACCOUNTS OF MATERIALS RESEARCH(2024)

引用 0|浏览4
暂无评分
摘要
Nanozymes are nanomaterials with intrinsic enzyme-like properties that can overcome the current limitations of natural enzymes, such as high preparation cost, instability, restricted application scenarios, etc. Since the Fe3O4 nanoparticles (NPs) were shown to possess the peroxidase (POD)-like activity in 2007, thousands of nanomaterials were reported to mimic the catalytic properties of various types of enzymes including catalase (CAT), haloperoxidase, superoxide dismutase (SOD), glucose oxidase, glutathione peroxidase, hydrolase, nuclease, nitroreductase, and others. Particularly, some nanozymes showed multienzyme-like activities with regarding to the changes in application scenarios such as temperature, pH, etc. Benefiting from their distinct physical-chemical characteristics and enzyme-like catalytic properties, the nanozymes have been widely applied in various biomedical related fields from in vitro detections to in vivo therapeutic treatments. However, currently their ambiguous structure-function correlations and relatively inferior activities compared to natural enzymes promote extensive efforts for the modifications on current nanozymes and development of novel alternative nanozymes. The single-atom nanozymes (SAzymes) present a unique way to mimic the highly evolved enzyme active centers, because of their atomically dispersed catalytic sites, which leads to high atom utilization efficiency and, thus, potentially extraordinary catalytic activity. Also, the abilities to modify the active centers and/or tune the interactions between the metal centers and supporting ligands provide a precise way to engineer the SAzymes at atomic levels. Given their well-defined geometric and electronic structures, the SAzymes thus can serve as exceptional templates for deciphering the structure-function relationships, which is beneficial for further improving their catalytic performances.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要