Roller-Quadrotor: A Novel Hybrid Terrestrial/Aerial Quadrotor with Unicycle-Driven and Rotor-Assisted Turning

2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)(2023)

引用 0|浏览5
暂无评分
摘要
The Roller-Quadrotor is a novel quadrotor that combines the maneuverability of aerial drones with the endurance of ground vehicles. This work focuses on the design, modeling, and experimental validation of the Roller-Quadrotor. Flight capabilities are achieved through a quadrotor configuration, with four thrust-providing actuators. Additionally, rolling motion is facilitated by a unicycle-driven and rotor-assisted turning structure. By utilizing terrestrial locomotion, the vehicle can overcome rolling and turning resistance, thereby conserving energy compared to its flight mode. This innovative approach not only tackles the inherent challenges of traditional rotorcraft but also enables the vehicle to roll through narrow gaps and overcome obstacles by taking advantage of its aerial mobility. We develop comprehensive models and controllers for the Roller-Quadrotor and validate their performance through experiments. The results demonstrate its seamless transition between aerial and terrestrial locomotion, as well as its ability to safely roll through gaps half the size of its diameter. Moreover, the terrestrial range of the vehicle is approximately 2.8 times greater, while the operating time is about 41.2 times longer compared to its aerial capabilities. These findings underscore the feasibility and effectiveness of the proposed structure and control mechanisms for efficient rolling through challenging terrains while conserving energy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要