Memory-based event-triggered fault-tolerant load frequency control of multi-area power systems with electric vehicles

Applied Mathematics and Computation(2024)

引用 0|浏览2
暂无评分
摘要
This paper focuses on the fault-tolerant load frequency control problem for a multi-area power system with electric vehicles, specifically addressing sensor failures. Electric vehicles are utilized for load frequency control, and a multi-area power system model is established while considering parameter uncertainty. To minimize network data transmission, a memory-based adaptive hybrid event-triggered mechanism is designed, utilizing historical data to construct a threshold function. In addition, both the system states as well as the faults are estimated using a sliding mode observer. The proposed fault-tolerant load frequency control scheme uses observers to mitigate the impact of sensor failures. By applying Lyapunov stability theory, sufficient conditions are derived for the stability of the multi-area power system. Finally, simulations are provided to demonstrate the validity of the proposed schemes.
更多
查看译文
关键词
Multi-area power system,Electric vehicles,Memory-based adaptive hybrid event-triggered mechanism,Load frequency control,Fault-tolerant control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要