Narrow laser linewidth measurement with the optimal demodulated Lorentzian spectrum

APPLIED OPTICS(2024)

引用 0|浏览5
暂无评分
摘要
A method called the optimal demodulated Lorentzian spectrum is employed to precisely quantify the narrowness of a laser's linewidth. This technique relies on the coherent envelope demodulation of a spectrum obtained through short delayed self-heterodyne interferometry. Specifically, we exploit the periodic features within the coherence envelope spectrum to ascertain the delay time of the optical fiber. Furthermore, the disparity in contrast within the coherence envelope spectrum serves as a basis for estimating the laser's linewidth. By creating a plot of the coefficient of determination for the demodulated Lorentzian spectrum fitting in relation to the estimated linewidth values, we identify the existence of an optimal Lorentzian spectrum. The corresponding laser linewidth found closest to the true value is deemed optimal. This method holds particular significance for accurately measuring the linewidth of lasers characterized as narrow or ultranarrow. (c) 2024 Optica Publishing Group
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要