Infestation patterns of two bark beetle species in multi-species coniferous forests on Kunashir Island in North Pacific Ocean region

Aleksandr Karpov, Nana Pirtskhalava-Karpova,Aleksei Trubin,Pavel Mezei,Maria Potterf,Rastislav Jakus

FOREST ECOLOGY AND MANAGEMENT(2024)

引用 0|浏览1
暂无评分
摘要
Bark beetle outbreaks are a significant cause of high tree mortality rates, dramatically impacting the resilience of forests. Understanding the triggers and impacts of these outbreaks is critical for effective forest management strategies. In this context, we studied windfall and bark beetle outbreaks in the period 2015-2021 in the southern part of Kurilskiy Nature Reserve, North Pacific Ocean region. Massive bark beetle outbreaks on Kunashir Island were not previously studied. The dominant tree species are Yezo spruce (Picea jezoensis) and Sakhalin fir (Abies sachalinensis), which collectively form spruce -fir forests on Kunashir Island. Glehn spruce (Picea glehnii), although less common on the island, forms pure spruce forests. Typically, spruce bark beetle (Ips typographus L.) attacks Yezo and Glehn spruce, and fir bark beetle (Polygraphus proximus) attacks Sakhalin fir. Significant tree mortality was observed in the aftermath of a substantial bark beetle outbreak, induced by gale -force winds. The total disturbance area was 620.5 ha, which is about 4% of the study area, 72% of the windfall area, and 28% of the bark beetle -infested area. Utilising a forest loss dataset (Global Forest Change dataset) and Sentinel 2 imagery, we identified windfall areas and standing tree mortality through unsupervised classification, accompanied by field sampling. Subsequently, the authors analysed the main drivers of disturbances caused by wind and bark beetle outbreaks using datasets combined with forest inventory data. Field data showed a pattern of tree infestation by both bark beetle species at the tree level, and the potential infestation of Sakhalin fir by the spruce bark beetle. We used boosted regression tree (BRT) models to analyse the main drivers using the presence and severity of wind damage and bark beetle outbreaks by phases. As predictors, we used a set of forest characteristics (tree species percentage, height, diameter of trunk, age, growth class) and environmental characteristics (slope, elevation, potential solar radiation, soil pH). The bark beetle outbreak was split into two phases: the first phase (2017-2019) involved the transition of bark beetles from colonised downed trees to standing trees, and the second phase (2020-2021) occurred during the spreading of beetles in standing trees. Stand tree characteristics were of greater significance for the likelihood of a bark beetle outbreak than environmental characteristics, across both phases for the southern part of the reserve. The percentage and the age of Glehn spruce and Yezo spruce were the main influencing factors for the presence and severity of an outbreak.
更多
查看译文
关键词
Spruce bark beetle,Fir bark beetle,Tree mortality,Boosted Regression Trees,Sentinel 2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要