Preparation of an injectable and photocurable carboxymethyl cellulose/hydroxyapatite composite and its application in cranial regeneration

Carbohydrate Polymers(2024)

Cited 0|Views14
No score
Abstract
Limited bone regeneration, uncontrollable degradation rate, mismatched defect zone and poor operability have plagued the reconstruction of irregular bone defect by tissue-engineered materials. A combination of biomimetic scaffolds with hydroxyapatite has gained great popularity in promoting bone regeneration. Therefore, we designed an injectable, photocurable and in-situ curing hydrogel by methacrylic anhydride -modified carboxymethyl cellulose (CMC-MA) loading with spherical hydroxyapatite (HA) to highly simulate the natural bony matrix and match any shape of damaged tissue. The prepared carboxymethyl cellulose-methacrylate/ hydroxyapatite(CMC-MA/HA) composite presented good rheological behavior, swelling ratio and mechanical property under light illumination. Meanwhile, this composite hydrogel promoted effectively proliferation, supported adhesion and upregulated the osteogenic-related genes expression of MC3T3-E1 cells in vitro, as well as the activity of the osteogenic critical protein, Integrin α1, β1, Myosin 9, Myosin 10, BMP-2 and Smad 1 in Integrin/BMP-2 signal pathway. Together, the composite hydrogels realized promotion of bone regeneration, deformity improvement, and the enhanced new bone strength in skull defect. It also displayed a good histocompatibility and stability of subcutaneous implantation in vivo. Overall, this study laid the groundwork for future research into developing a novel biomaterial and a minimally invasive therapeutic strategies for reconstructing bone defects and contour deficiencies.
More
Translated text
Key words
Carboxymethyl cellulose,Hydroxyapatite,Bone regeneration,Photo-crosslinking,In situ photopolymerization
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined