Risk-averse bi-level planning model for maximizing renewable energy hosting capacity via empowering seasonal hydrogen storage

APPLIED ENERGY(2024)

引用 0|浏览1
暂无评分
摘要
Renewables (i.e., solar and wind power) in the Nordic area have highly seasonal characteristics, which severely restrict the wide development of renewables since they can be excessive in summer but insufficient in winter with intermittent outputs. The conventional battery energy storage system (BESS) with short-term adjustment functionality cannot eliminate the seasonal imbalance of renewables. In this regard, a risk-based bi-level planning model is presented to maximize the hosting capacity (HC) of renewables through configuring seasonal hydrogen storage (SHS) and BESS. Specifically, the upper level applies a multi -objective scheme to maximize HC and minimize the investment cost simultaneously. In turn, the lower level is driven by maximizing the profits of the distribution system operator (DSO) with the implementation of price-based demand response (PBDR). Due to forecasting errors of renewables and load resulting from intermittent output and random behaviors, a stochastic programming (SP) method is developed to address and adapt multiple uncertain fluctuations. Moreover, the conditional value-at-risk (CVaR) is introduced to measure the effect of the risks raised by multiple uncertainties on system operation. Finally, numerical studies are employed to verify the effectiveness of the proposed model. Compared to the cases without considering PBDR and SHS, the total renewable energy HC in the proposed model is increased by 2.30 MW and 0.37 MW, respectively, while the yearly cost benefit of DSO is enhanced by 28063.2 US$ and 17823.7 US$, respectively. The promising results demonstrate the empowerment of SHS can promote the cross-seasonal consumption of renewables, effectively maximizing the HC and improving the economic operation of distribution systems.
更多
查看译文
关键词
Risk-based planning,Hosting capacity,Renewables,Seasonal hydrogen storage,Cross-seasonal adjustment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要