谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Glycine betaine modulates extracellular polymeric substances to enhance microbial salinity tolerance

Yan Xia,Xinbai Jiang, Shuaishuai Guo,Yuxuan Wang,Yang Mu,Jinyou Shen

ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY(2024)

引用 0|浏览6
暂无评分
摘要
High salinity inhibits microbial activity in the bioremediation of saline wastewater. To alleviate osmotic stress, glycine betaine (GB), an osmoprotectant, is added to enhance the secretion of extracellular polymeric substances (EPS). These EPS are pivotal in withstanding environmental stressors, yet the intricate interplay between GB supplementation and microbial responses through EPS modifications-encompassing composition, molecular architecture, and electrochemical features-remains elusive in hypersaline conditions. Here we show microbial strategies for salinity endurance by investigating the impact of GB on the dynamic alterations of EPS properties. Our findings reveal that GB supplementation at 3.5% salinity elevates the total EPS (T-EPS) content from 12.50 +/- 0.05 to 24.58 +/- 0.96 mg per g dry cell weight. The observed shift in zeta potential from -28.95 to -6.25 mV at 0% and 3.5% salinity, respectively, with GB treatment, indicates a reduction in electrostatic repulsion and compaction. Notably, the EPS protein secondary structure transition from b-sheet to a-helix, with GB addition, signifies a more compact protein configuration, less susceptible to salinity fluctuations. Electrochemical analyses, including cyclic voltammetry (CV) and differential pulse voltammetry (DPV), reveal GB's role in promoting the release of exogenous electron shuttles, such as flavins and c-type cytochromes (c-Cyts). The enhancement in DPV peak areas (QDPV) with GB addition implies an increase in available extracellular electron transfer sites. This investigation advances our comprehension of microbial adaptation mechanisms to salinity through EPS modifications facilitated by GB in saline habitats. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
High salinity,Extracellular polymeric substances,Glycine betaine,Protein secondary structure,Extracellular electron transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要