Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation

Luyao Liu,Liqiang Duan,Nan Zheng,Qiushi Wang, Maotong Zhang, Dong Xue

ENERGY(2024)

引用 0|浏览0
暂无评分
摘要
The cracking of ammonia to produce hydrogen and nitrogen at high temperatures, without carbon dioxide emissions, has great potential for future energy development. Hence, a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation is proposed and the thermodynamic models are constructed. Under the design conditions, the exergy efficiency, and primary energy saving rate of the novel system in summer are 47.83%, and 51.36%, respectively, while in winter, they are 50.52%, and 52.01%, respectively. Meanwhile, the thermodynamic performances of the new system and two reference systems are compared, in which the reference system 1 isn't coupled with a solar collector, and SOFC adopts an anode outlet gas recirculation layout, the reference system 2 has neither coupled solar collector nor anode outlet gas recirculation arrangement for SOFC. The results demonstrate that the anode outlet gas recirculation layout and coupling solar collectors in SOFC help to reduce the fuel consumption of the system. Moreover, the subsystem's exergy flow diagrams under the design condition reveal the exergy destruction of the components. And the impacts of key factors including SOFC operating temperature, fuel utilization rate, direct normal irradiance, and hydrogen recovery factor are analyzed.
更多
查看译文
关键词
Ammonia,Solid oxide fuel cell,Anode outlet gas recirculation,Solar energy,Poly -generation system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要