Starch microsphere silicon-boron crosslinker for low concentration hydroxypropyl guar gum based fracturing fluid

International Journal of Biological Macromolecules(2024)

引用 0|浏览2
暂无评分
摘要
Hydroxypropyl guar gum (HPG) is a critical thickener to increase viscosity and lubrication to improve the water-based hydraulic fracturing efficiency. However, current crosslinkers require a large amount of HPG (>0.3 wt%) to form gel with sufficient viscosity, and high concentrations of HPG may cause adverse effects to the production and the environment. In this study, a novel starch microsphere silica‑boron crosslinker (SMSB) was developed using starch microspheres as a carrier and γ-aminopropyl triethoxy silane (KH550) as a modifier with an in-house method. Both the rheology and surface reactions of the SMSB-HPG crosslinking system were studied using multiple laboratory experiments and molecular dynamics simulation. The results showed that SMSB crosslinker caused multi-site cross-linking with low concentration (only 0.2 wt%) of HPG molecules, reducing the twisting of single molecular chain in the crosslinking system, enhancing the cross-linking strength between molecular chains, and making HPG molecular chains stretcher in the aqueous solution. The apparent viscosity and viscoelasticity of the HPG system were substantially higher than the organoboron crosslinker, and the temperature resistance of the SMSB-HPG crosslinking system was up to 140 °C. This study provides an alternative green crosslinker for more sustainable industrial applications and provides theoretical basis for the modification of biomaterials.
更多
查看译文
关键词
Hydraulic fracturing fluid,Starch microspheres,Organosilane‑boron crosslinker,Hydroxypropyl guar gum,Viscoelasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要