Spatial variation in iodine content with relation to soil physicochemical properties in lower Himalayan region

ENVIRONMENTAL RESEARCH(2024)

引用 0|浏览12
暂无评分
摘要
Topography of a place has a significant impact on soil characteristics that ultimately influence soil iodine levels. Lower Himalayan region (LHR) in Pakistan has a wide range of climatic and geological variations. Hence, an investigation was conducted to analyze the iodine concentration and other physicochemical properties of soils in two LHR districts, Haripur and Mansehra. Spatial analysis indicated a decrease in iodine levels in the mountainous regions in comparison to the flat portions of LHR. Soil samples obtained from different locations across Haripur had a stronger affinity for iodine due to variations in solubility and adsorption of iodine to soil clay components, which can be attributed to lower pH, higher organic matter, and a higher cation exchange capacity (CEC). In contrast to the plains of Haripur, elevated locations in the Mansehra district had decreased levels of iodine, along with a higher soil pH and reduced soil organic matter. The soil erosion and depletion of soil micronutrients in the hilly region of Mansehra may be attributed to the unfavorable soil conditions and excessive precipitation. Presence of clay, iron (Fe), and aluminum (Al) in the soil led to a rise in iodine levels. Iodine concentrations exhibited an inverse relationship with soil acidity. Study revealed a direct correlation between soil iodine levels and their cation exchange capacity (CEC) and clay content. This study aims to gather fundamental data for the chosen regions of LHR to address illnesses caused by iodine deficiency.
更多
查看译文
关键词
Iodine concentration,Iodine deficiency disorders,Mountainous area,Plain area,Soil properties,Topography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要