Chrome Extension
WeChat Mini Program
Use on ChatGLM

Electronic structure and optical properties of In- and Vacancy-doped 6H-SiC: a first-principles study

Xin Wang, Xin Yuan, Huan Zhou, Yuqing Yang, Dawei Lu, Song Yang, Ying Bian

Journal of Molecular Modeling(2024)

Cited 0|Views1
No score
Abstract
Purposes The paper aims to investigative the cacuses and impacts of In- and Vacancy-doped to 6 H -SiC, expecting that improving optical properties of materials. Design-Using the first-principles calculations, we discuss the electronic structure and optical properties of different doped 6H-SiC systems. Findings The results show that In-doped 6H-SiC becomes a direct bandgap p-type semiconductor and the energy bandgap is reduced from the intrinsic 2.059 to 1.515 eV. We demonstrate the stability of the systems through the formation energy analysis, meanwhile identify their physical origins and discuss applications of all structures in electronic devices within optical analysis. Find the energy beginning values of the V Si -doped and V C -doped systems’ optical absorption spectrums and extend to 0.4 2 eV and 0.11 eV respectively compared with the original 3.23 eV. In the visible light region, the reflectivity images of the V C /V Si and (In, V Si )-codoped systems rise obviously. Conclusions The optical properties of all doping systems were analyzed to be improved compared with the intrinsic, all above mentioned provide a theoretical basis for the fabrication of spintronic and optical devices.
More
Translated text
Key words
First-principles,Silicon carbide,Electronic structure,Optical property
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined