Usefulness of second-generation motion correction algorithm in improving delineation and reducing motion artifact of coronary computed tomography angiography.

Journal of cardiovascular computed tomography(2024)

引用 0|浏览2
暂无评分
摘要
BACKGROUND:The purpose of this study was to investigate the usefulness of second-generation intra-cycle motion correction algorithm (SnapShot Freeze 2, GE Healthcare, MC2) in improving the delineation and interpretability of coronary arteries in coronary computed tomography angiography (CCTA) compared to first-generation intra-cycle motion correction algorithm (SnapShot Freeze, GE Healthcare, MC1). METHODS:Fifty consecutive patients with known or suspected coronary artery disease who underwent CCTA on a 256-slice CT scanner were retrospectively studied. CCTA were reconstructed with three different algorithms: no motion correction (NMC), MC1, and MC2. The delineation of coronary arteries on CCTA was qualitatively rated on a 5-point scale from 1 (nondiagnostic) to 5 (excellent) by two radiologists blinded to the reconstruction method and the patient information. RESULTS:On a per-vessel basis, the delineation scores of coronary arteries were significantly higher on MC2 images compared to MC1 images (median [interquartile range], right coronary artery, 5.0 [4.5-5.0] vs 4.5 [4.0-5.0]; left anterior descending artery, 5.0 [4.5-5.0] vs 4.5 [3.5-5.0]; left circumflex artery, 5.0 [4.5-5.0] vs 4.5 [3.9-5.0]; all p ​< ​0.05). On a per-segment basis, for both 2 observers, the delineation scores on segment 1, 2, 8, 9, 10, 12 and 13 on MC2 images were significantly better than those on MC1 images (p ​< ​0.05). The percentage of interpretable segments (rated score 3 or greater) on NMC, MC1, and MC2 images was 90.5-91.9%, 97.4-97.9%, and 100.0%, respectively. CONCLUSION:Second-generation intra-cycle motion correction algorithm improves the delineation and interpretability of coronary arteries in CCTA compared to first-generation algorithm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要