Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO)

Kangkang Ge,Hui Shao, Encarnacion Raymundo-Piñero,Pierre-Louis Taberna,Patrice Simon

Nature Communications(2024)

引用 0|浏览5
暂无评分
摘要
Understanding the local electrochemical processes is of key importance for efficient energy storage applications, including electrochemical double layer capacitors. In this work, we studied the charge storage mechanism of a model material - reduced graphene oxide (rGO) - in aqueous electrolyte using the combination of cavity micro-electrode, operando electrochemical quartz crystal microbalance (EQCM) and operando electrochemical dilatometry (ECD) tools. We evidence two regions with different charge storage mechanisms, depending on the cation-carbon interaction. Notably, under high cathodic polarization (region II), we report an important capacitance increase in Zn 2+ containing electrolyte with minimum volume expansion, which is associated with Zn 2+ desolvation resulting from strong electrostatic Zn 2+ -rGO interactions. These results highlight the significant role of ion-electrode interaction strength and cation desolvation in modulating the charging mechanisms, offering potential pathways for optimized capacitive energy storage. As a broader perspective, understanding confined electrochemical systems and the coupling between chemical, electrochemical and transport processes in confinement may open tremendous opportunities for energy, catalysis or water treatment applications in the future.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要