A Novel Dual-Fc Bispecific Antibody with Enhanced Fc Effector Function.

Fulai Zhou, Yinyin Ben, Hao Jiang, Siwen Tan,Guangmao Mu, Zhengxia Zha, Shuting Dong, Sheng Huang, Yijun Zhou, Ying Jin,Mark L Chiu

Biochemistry(2024)

引用 0|浏览0
暂无评分
摘要
Bispecific antibodies (BsAbs) are undergoing continued development for applications in oncology and autoimmune diseases. While increasing activity by having more than one targeting arm, most BsAb engineering employs single Fc engagement as monoclonal antibodies. Here, we designed a novel immunoglobulin gamma-1 (IgG1)-derived dual-Fc BsAb containing two Fc regions and two distinct asymmetric antigen binding arms comprising a Fab arm and another VHH domain. In conjunction with the knob-into-hole technology, dual-Fc BsAbs could be produced with a high yield and good stability. We explore how Fc engineering effects on dual-Fc constructs could boost the desired therapeutic efficacy. This new format enabled simultaneous bispecific binding to corresponding antigens. Furthermore, compared to the one-Fc control molecules, dual-Fc BsAbs were shown to increase the avidity-based binding to FcγRs to result in higher ADCC and ADCP activities by potent avidity via binding to two antigens and Fc receptors. Overall, this novel BsAb format with enhanced effector functionalities provides a new option for antibody-based immunotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要