Active Dual-Protein Coating Assisted by Stepwise Protein-Protein Interactions Assembly Reduces Thrombosis and Infection

Wentai Zhang, Jiangling Zhang, Fangkun Hu, Wenxuan Wang,Zeyu Du, You Ke, Qing Ma,Xiaohui Mou,Jing Lu,Zhilu Yang

ADVANCED SCIENCE(2024)

引用 0|浏览1
暂无评分
摘要
Universal protein coatings have recently gained wide interest in medical applications due to their biocompatibility and ease of fabrication. However, the challenge persists in protein activity preservation, significantly complicating the functional design of these coatings. Herein, an active dual-protein surface engineering strategy assisted by a facile stepwise protein-protein interactions assembly (SPPIA) method for catheters to reduce clot formation and infection is proposed. This strategy is realized first by the partial oxidation of bovine serum albumin (BSA) and lysozyme (LZM) for creating stable nucleation platforms via hydrophobic interaction, followed by the assembly of nonoxidized BSA (pI, the isoelectric point, approximate to 4.7) and LZM (pI approximate to 11) through electrostatic interaction owing to their opposite charge under neutral conditions. The SPPIA method effectively preserves the conformation and functionality of both BSA and LZM, thus endowing the resultant coating with potent antithrombotic and bactericidal properties. Furthermore, the stable nucleation platform ensures the adhesion and durability of the coating, resisting thrombosis and bacterial proliferation even after 15 days of PBS immersion. Overall, the SPPIA approach not only provides a new strategy for the fabrication of active protein coatings but also shows promise for the surface engineering technology of catheters. This study proposes a stepwise protein-protein interactions assembly strategy to fabricate an active dual-protein coating, balancing the deposition efficiency and preservation of protein activity. The findings suggest that the assembled bovine serum albumin (BSA) and lysozyme (LZM) synergistically endow the modified surfaces with enhanced antithrombosis and antibacterial properties, exhibiting application potential for central venous catheters. image
更多
查看译文
关键词
active protein coating,antibacterial,antithrombosis,central venous catheters,electrostatic assembly
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要