Development and First Clinical Use of an Extracorporeal Artificial Multiorgan System in Acute-on-Chronic Liver Failure Patients.

Suhail Ahmad, Alexander Novokhodko,Iris W Liou,Nancy Colobong Smith, Robert L Carithers,Jorge Reyes,Ramasamy Bakthavatsalam, Carl Martin,Renuka Bhattacharya, Nanye Du, Shaohang Hao,Dayong Gao

ASAIO journal (American Society for Artificial Internal Organs : 1992)(2024)

引用 0|浏览4
暂无评分
摘要
Multiple organ failure (MOF) is a common and deadly condition. Patients with liver cirrhosis with acute-on-chronic liver failure (AOCLF) are particularly susceptible. Excess fluid accumulation in tissues makes routine hemodialysis generally ineffective because of cardiovascular instability. Patients with three or more organ failures face a mortality rate of more than 90%. Many cannot survive liver transplantation. Extracorporeal support systems like MARS (Baxter, Deerfield, IL) and Prometheus (Bad Homburg, Germany) have shown promise but fall short in bridging patients to transplantation. A novel Artificial Multi-organ Replacement System (AMOR) was developed at the University of Washington Medical Center. AMOR removes protein-bound toxins through a combination of albumin dialysis, a charcoal sorbent column, and a novel rinsing method to prevent sorbent column saturation. It removes excess fluid through hemodialysis. Ten AOCLF patients with over three organ failures were treated by the AMOR system. All patients showed significant clinical improvement. Fifty percent of the cohort received liver transplants or recovered liver function. AMOR was successful in removing large amounts of excess body fluid, which regular hemodialysis could not. AMOR is cost-effective and user-friendly. It removes excess fluid, supporting the other vital organs such as liver, kidneys, lungs, and heart. This pilot study's results encourage further exploration of AMOR for treating MOF patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要