Transcriptome analysis provides insights into high fat diet-induced kidney injury and moderate intensity continuous training-mediated protective effects

HELIYON(2024)

Cited 0|Views0
No score
Abstract
Although physics exercise has been utilized to prevent and treat a variety of metabolic diseases, its role in obesity-related kidney diseases remains poorly understood. In this study, we assessed the protective potential of moderate intensity continuous training (MICT) against high fat diet (HFD)-induced kidney injury and found that MICT could significantly reduce obesity indexes (body weight, serum glucose, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol) and kidney injury indexes (serum creatinine and the expression of Kim-1 mRNA) in HFD-fed mice. PAS staining and Masson staining displayed that MICT maintained the morphological structure of kidney subunits and reduced kidney fibrosis in HFD-fed mice. By kidney RNA-seq, we identified several genes and pathways (Cd9, Foxq1, Mier3, TGF-beta signaling pathway etc.) that might underlie HFD-induced kidney injury and MICT-mediated protective effects. In conclusion, this study revealed the protective role of MICT in HFD-induced kidney injury and suggested potential targets for the prevention and treatment of obesity-related kidney diseases.
More
Translated text
Key words
Exercise,MICT,Obesity,HFD,Kidney injury,Transcriptome
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined