Epidrugs: alternative chemotherapy targeting Theileria annulata schizont stage parasites

MICROBIOLOGY SPECTRUM(2024)

引用 0|浏览0
暂无评分
摘要
The growing emergence of resistance to current anti-theilerial agents necessitates the exploration of alternative approaches to drug discovery. This study evaluated the antiparasitic efficacy of 148 compounds derived from an epigenetic inhibitor library against the schizont stage of a Theileria annulata-infected cell line. Initial screening at a concentration of 10 mu M identified 27 compounds exhibiting promising anti-theilerial activity. Further investigation, including determination of the 50% inhibitory concentration (IC50) and host cell cytotoxicity assay, highlighted seven highly effective compounds (SAHA, BVT-948, Trichostatin A, Methylstat, Plumbagin, Ryuvidine, and TCE-5003) against T. annulata-infected cells. Analysis of the active compounds revealed their inhibitory action against various human targets, such as HDAC (SAHA and Trichostatin A), SET domain (Ryuvidine), PRMT (BVT-948 and TCE-5003), histone demethylase (Methylstat), and ROS/apoptosis inducer (Plumbagin). We identified gene orthologs of these targets in Theileria and conducted molecular docking studies, demonstrating effective binding of the compounds with their respective targets in the parasite, supported by in vitro data. Additionally, we performed in silico ADME/T predictions, which indicated potential mutagenic and hepatotoxic effects of Plumbagin, Methylstat, and TCE-5003, rendering them unsuitable for drug development. Conversely, SAHA, Trichostatin A, and BVT-948 showed promising characteristics and may represent potential candidates for future development as chemotherapeutic agents against tropical theileriosis. These findings provide valuable insights into the search for novel anti-theilerial drugs and offer a basis for further research in this area.
更多
查看译文
关键词
epigenetic inhibitors,Theileria,drug repurposing,apoptosis,apicomplexan
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要