Interface-Embedded Pt-Plasmons Enhanced Self-Powered Deep-UV Photodetector

IEEE Electron Device Letters(2024)

引用 0|浏览0
暂无评分
摘要
Motivated by improving the performance of self-powered deep-UV (DUV) photodetector (PD), for the first time, Pt plasmonic nanoparticles (NPs) were embedded in hybrid PEDOT: PSS/β-Ga 2 O 3 heterojunction interface to maximize light-matter interaction. Profiting from the maximized direct enhancement of the optical field in active region by Pt plasmonic NPs resonance coupling, the increased light absorption excites abundant photogenerated carriers, which are rapidly separated by spatially coincident strong junction electric field. As a result, the resultant PD exhibits higher photocurrent and obtains an improved responsivity of 55.4 mA/W, EQE of 27 %, detectivity of 1.9×1014 Jones, and faster response speed under self-powered mode. The optimized optical field in active region caused by embedded Pt plasmons resonance coupling is the reason for the improvement of light absorption and photoresponsivity, which is verified by theoretical simulation. This work demonstrates for embedded plasmonic enhancement in DUV spectral region, providing an innovative pathway for the optimized design of high-sensitivity DUV PDs.
更多
查看译文
关键词
Deep-UV Photodetector,embedded plasmons,Pt nanoparticles,β-Ga2O3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要