Differential active self-interference cancellation for asynchronous in-band full-duplex GFSK

IEICE Transactions on Communications(2024)

引用 0|浏览1
暂无评分
摘要
This paper proposes a novel differential active self-interference canceller (DASIC) algorithm for asynchronous in-band full-duplex (IBFD) Gaussian filtered frequency shift keying (GFSK), which is designed for wireless Internet of Things (IoT). In IBFD communications, where two terminals simultaneously transmit and receive signals in the same frequency band, there is an extremely strong self-interference (SI). The SI can be mitigated by an active SI canceller (ASIC), which subtracts an interference replica based on channel state information (CSI) from the received signal. The challenging problem is the realization of asynchronous IBFD for wireless IoT in indoor environments. In the asynchronous mode, pilot contamination is induced by the non-orthogonality between asynchronous pilot sequences. In addition, the transceiver suffers from analog front-end (AFE) impairments, such as phase noise. Due to these impairments, the SI cannot be canceled entirely at the receiver, resulting in residual interference. To address the above issue, the DASIC incorporates the principle of the differential codec, which enables to suppress SI without the CSI estimation of SI owing to the differential structure. Also, on the premise of using an error correction technique, iterative detection and decoding (IDD) is applied to improve the detection capability while exchanging the extrinsic log-likelihood ratio (LLR) between the maximum a-posteriori probability (MAP) detector and the channel decoder. Finally, the validity of using the DASIC algorithm is evaluated by computer simulations in terms of the packet error rate (PER). The results clearly demonstrate the possibility of realizing asynchronous IBFD.
更多
查看译文
关键词
Asynchronous in-band full-duplex,pilot contamination,GFSK,active self-interference canceller,differential encoder,iterative detection and decoding,analog front-end impairment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要