UKF-Based Sensor Fusion for Joint-Torque Sensorless Humanoid Robots

ICRA 2024(2024)

Cited 0|Views8
No score
Abstract
This paper proposes a novel sensor fusion based on Unscented Kalman Filtering for the online estimation of joint-torques of humanoid robots without joint-torque sensors. At the feature level, the proposed approach considers multi-modal measurements (e.g. currents, accelerations, etc.) and non-directly measurable effects, such as external contacts, thus leading to joint torques readily usable in control architectures for human-robot interaction. The proposed sensor fusion can also integrate distributed, non-collocated force/torque sensors, thus being a flexible framework with respect to the underlying robot sensor suit. To validate the approach, we show how the proposed sensor fusion can be integrated into a two-level torque control architecture aiming at task-space torque control. The performances of the proposed approach are shown through extensive tests on the new humanoid robot ergoCub, currently being developed at Istituto Italiano di Tecnologia. We also compare our strategy with the existing state-of-the-art approach based on the recursive Newton-Euler algorithm. Results demonstrate that our method achieves low root mean square errors in torque tracking, ranging from 0.05 Nm to 2.5 Nm, even in the presence of external contacts.
More
Translated text
Key words
Humanoid Robot Systems,Physical Human-Robot Interaction,Sensor Fusion
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined