Phononic Crystals in Superfluid Thin-Film Helium

Alexander Rolf Korsch,Niccolò Fiaschi,Simon Gröblacher

arxiv(2024)

Cited 0|Views1
No score
Abstract
In recent years, nanomechanical oscillators in thin films of superfluid helium have attracted attention in the field of optomechanics due to their exceptionally low mechanical dissipation and optical scattering. Mechanical excitations in superfluid thin films - so-called third sound waves - can interact with the optical mode of an optical microresonator by modulation of its effective refractive index enabling optomechanical coupling. Strong confinement of third sound modes enhances their intrinsic mechanical non-linearity paving the way for strong phonon-phonon interactions with applications in quantum optomechanics. Here, we realize a phononic crystal cavity confining third sound modes in a superfluid helium film to length scales close to the third sound wavelength. A few nanometer thick superfluid film is self-assembled on top of a silicon nanobeam optical resonator. The periodic patterning of the silicon material creates a periodic modulation of the superfluid film leading to the formation of a phononic band gap. By engineering the geometry of the silicon nanobeam, the phononic band gap allows the confinement of a localized phononic mode.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined